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Abstract

The effect of high-frequency excitation on a class of systems with friction is considered. Friction is
represented by the LuGre and the elasto-plastic model of friction. Analytical expressions are obtained for
the effective friction characteristics under two types of fast excitation. Numerical simulation using
MATLAB validates the analytical results. The stability of a velocity tracking system with friction is
discussed in light of the effective friction characteristics. Numerical simulation of a MATLABt
SIMULINK model is carried out to unfold the basic physical mechanism underneath the mathematical
expressions.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Friction between two sliding surfaces plays a central controlling role in the dynamic behaviour
of a number of systems. Various complex dynamical features like stick–slip motion, self–excited
and chaotic oscillations are often identified with the presence of friction in joints and contact
interfaces. Research on dynamical systems with friction has a long and rich history [1]. Recent
advances in the precision mechatronic systems have brought a fresh impetus in the research
interest on this topic. Except in a few cases, the side effects of friction lead to loss of functional
accuracy of many systems and call for compensatory control arrangements. Though Coulomb’s
dry friction model is useful for the majority of rough engineering calculations, it is hardly suitable
for some sophisticated applications because this model disregards the microscopic degrees of
freedom of contact, which are important for some applications. For example, in precise
mechatronic systems, the velocity and length scale of the motion becomes comparable to the
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length and time scale involved in the microscopic degrees of freedom of contact. Such
understanding has led to the development of new phenomenological models of friction [2–4] and
various compensation techniques. One of these compensation techniques considers high-
frequency oscillation (dither) [5–7] in mitigating some evil effects of friction and shows a great
deal of promise.
Engineers in reducing the effect of friction have used high-frequency oscillation long back [8,9].

However, only very recently, a systematic study of this effect has been initiated in a more general
setup. Research [10–12] has revealed that any excitation operating at a time scale much faster
compared to the natural time scale of a system may bring forth non-trivial changes in the
dynamics of non-linear systems. In recent literature, such excitations are termed as fast vibration.
Fast vibration have been shown to effectively change certain characteristics of mechanical systems
such as equilibrium states [13], linear stiffness [14], damping [15] and natural frequencies [16].
Suitably designed fast excitation may also significantly influence certain non-linear features like
restoring and energy dissipation characteristics, frequency response and bifurcation behaviour of
non-linear systems. Another very important application of fast vibration is pivoted around the
smoothening effect of the same on discontinuous system characteristics. Dry-friction character-
istics are phemenologically described by a discontinuous fiction–velocity relationship, the
discontinuity being at zero velocity, i.e., when velocity reversal takes place. Velocity reversal often
involves sticking of two interacting surfaces, and during sticking phase, friction force assumes a
value that depends on the external load. Thus, there exists a difference in the level of friction force
in sticking and sliding phase. This is responsible for stick–slip motion. During low-velocity sliding,
friction is shown to have drooping characteristics with increasing velocity. This is known as
Stribeck effect, and responsible for self-excited oscillation of various systems. Thomsen [5]
considers a similar model of friction to investigate into the effect of fast excitation on stick–slip
dynamics. It is shown that a properly chosen fast vibration is capable of suppressing self-excited
oscillation and stick–slip motion. Due to the effect of fast-vibration the zero-velocity discontinuity
of friction force is removed by an equivalent viscous damping characteristics, and the low-velocity
drooping characteristic tends to flatten out simultaneously. Feeny and Moon [6] have
experimentally demonstrated the possibility of using fast vibration in quenching friction-driven
chaos. Tuned dither has also been successfully applied in eliminating friction-induced error in
robotic manipulators [7].
A great number of recent phenomenological friction models consider only the macroscopic

degrees of freedom. This implies that all microscopic degrees of freedom are much faster than the
macroscopic ones. Such an assumption breaks loose when the velocity of sliding becomes
comparable to the ratio of microscopic length scale to macroscopic time scale [17]. This
microscopic length scale may be of the same order of magnitude as the size of the asperities of the
contact surface or the correlation length of the surface roughness. Therefore, when velocity
becomes very low, one has to pay attention also in the microscopic degrees of freedom, which are
in general faster in dynamics. Moreover, coming to the understanding of the effect of fast
vibration, consideration of the interaction of fast microscopic degrees of freedom and the fast
excitation becomes important. Few recent models of friction incorporate the microscopic degrees
of freedom, and such models are known as dynamic models of friction [2–4]. In the present paper,
the effect of fast vibration on the dynamics of a class of systems represented by dynamic models
of friction is investigated. For the present investigation, the LuGre [2] and the single-state
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elasto-plastic models of friction [3] are considered. The effect of fast vibration on the stick–slip,
and self-excited oscillation has been discussed in the light of fast vibration-induced effective
friction characteristics. Detail numerical simulation is carried out to understand the mechanism of
the effect of fast vibration on friction-driven dynamics. The organisation of the paper is briefly
given below.
The discussion starts with a brief review of the existing mathematical models of friction in

Section 2. Section 3 deals with a simple non-inertial contact model considering only the
microscopic degrees of freedom of the contact, and the effect of high-frequency velocity variation
is studied by the method of harmonic balance. In Section 4, an example system consisting of an
elastic slider moving on a frictional surface is considered. The slider is modelled as a single-degree-
of-freedom system and the frictional contact is modelled according to the LuGre dynamic friction
model. In Section 5, the effect of high-frequency excitation on the friction characteristics of the
example system discussed in Section 4 is studied analytically. Two different kinds of fast
excitation, namely sinusoidal force excitation and square wave velocity excitation are considered
for analytical estimation of the effective friction characteristics. Analytical results are also
compared with that obtained from the direct numerical simulation of the system. The effect of
fast-excitation on stick–slip instability of the system is considered in Section 6. In Section 7, a
more rigorous elasto-plastic model of friction is considered for numerical investigation into the
mechanism of the effect of fast excitation on stick–slip motion.

2. Models of friction

Modern literature is rich in significantly large number of mathematical models of friction. Each
of these models is relevant only for one or few phenomenology and operating ranges of its own
interest. For a particular problem, selection of the appropriate friction model is very important.
Depending on the length and time scale involved, the existing models of friction in literature can
be classified into two broad categories, namely macroscopic and microscopic models.
In macroscopic models, friction is represented as a dissipative function of relative velocity of

sliding. Such models are mainly valid in situations where only macroscopic structural degrees of
freedom involving relatively slower time scale are of paramount importance. The simplest form of
such macroscopic models is the Coulomb’s dry friction model given as follows:

F ¼ Fc SgnðvÞ: ð2:1Þ

This model only recognises the fact that friction force F is constant and depends on the sign of
relative sliding velocity. However, Coulomb’s model cannot describe the stick–slip or the Stribeck
effect. There exist a number of extensions of Coulomb’s model, which consider the stick–slip and
the Stribeck effect. Such models are called kinetic friction models (KFM) and may in general be
given by

F ¼

gðvÞ; va0

Fe if v ¼ 0 and jFejoFs

Fs SgnðFeÞ otherwise

8><
>:

9>=
>;; ð2:2Þ
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where

gðvÞ ¼ Fc þ ðFs � FcÞejv=vsjd þ Fvv:

In Eq. (2.2), Fe is the external force, Fs is the maximum level of multi-valued friction force during
sticking and Fc is the kinetic friction force. vs is the characteristic Stribeck velocity and Fv is the
viscous friction coefficient.
In recent times, a series of sophisticated models friction have been developed considering the

microscopic degrees of freedoms of friction interface. Such models are known as ‘bristle models’,
where asperities of the friction interface are considered as elastic spring-like bristles. When a
tangential force is applied, the bristles deflect like springs, and the friction force is represented as
the average deflection force of the spring-like bristles. When deflection of the bristles is sufficiently
large, the bristles start slipping. The velocity of sliding determines the average deflection during
steady slipping. The LuGre model [2] is the most widely used form of microscopic model of
friction that relies on bristles interpretation. Recently, Dupont et al. [3] further generalise the
LuGre model to incorporate stiction phenomena in a more rigorous manner. The generalised
LuGre model, known as the ‘single-state elasto-plastic model’ is described as

F ¼ s0z þ s1
dz

dt
þ s2v; s0;s1; s2 > 0;

dz

dt
¼ v �

s0aðz; vÞjvjz
gðvÞ

; ð2:3Þ

where v is the relative velocity between the matting surfaces and z is the average deflection of the
bristles. gðvÞ models the Stribeck effect and the most common form of gðvÞ is as follows:

gðvÞ ¼ Fc þ ðFs � FcÞe�jv=vsjd : ð2:4Þ

s0 and s1 represents bristle stiffness and damping, respectively. s2 is viscous damping coefficient
and vs is the characteristic Stribeck velocity. To render the model dissipative, the bristle damping
term s1 is taken to be a function of velocity. The most common form of this function is given by

s1ðvÞ ¼ #s1e�jv=vd j
d
; ð2:5Þ

where vd is a characteristic velocity and d is a positive quantity, and these two parameters models
the rate of change of bristle damping with sliding velocity. The function aðz; vÞ (introduced
by Dupont et al. [3]) controls different phases of friction process like sticking, elasto-plastic
pre-sliding and pure sliding by assuming different values at different states as follows:

aðz; vÞ ¼

0 for jzjozba

amðz; zba; zssÞ for zbaojzjozssðvÞ

1 for jzj > zssðvÞ

8><
>:

9>=
>; when SgnðvÞ ¼ SgnðzÞ

¼ 0f g when SgnðvÞaSgnðzÞ;

where 0oamð:Þo1 and zssðvÞ ¼
gðvÞ
s0

:

ð2:6Þ
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Dupont et al. [3] suggest the following form of the function amð:Þ:

amðz; zba; zssðvÞÞ ¼
1

2
sin p

z � zssþzba

2

zss � zba

� 	
þ

1

2
ð2:7Þ

The above form of the function aðz; vÞ clearly suggests that during sticking when bristle deflection
z is less than zba (the breakaway deflection) aðz; vÞ ¼ 0: After that elasto-plastic pre-sliding begins
when aðz; vÞ ¼ amð:Þ and this phase continues unto z ¼ zssðvÞ (maximum steady-state bristle
deflection at velocity v). Then full plastic slipping follows when aðz; vÞ ¼ 1:
It is to be noted that the LuGre model may be simulated by putting aðz; vÞ ¼ 1 in Eq. (2.3).

Thus, the LuGre model cannot rigorously capture complete stiction during which the bristle
deflection is expected to be purely elastic (as in case of the elasto-plastic model). Numerical
simulation of systems with the LuGre friction model shows slow drift of the slider during stiction
phase. This is similar to the elasto-plastic pre-sliding observed in case of the elasto-plastic model.

3. Effect of harmonically varying unidirectional velocity on friction characteristics: contact model

without inertia

As friction is strongly dependent on velocity, any effect of high-frequency excitation on friction
takes place through high-frequency velocity variation. In order to understand the effect of high-
frequency velocity variation on friction, a hypothetical contact model is considered where a slider
is moving with a constant velocity (vm), and a velocity perturbation of the form va cosðotÞ (with
vao ¼ vm) is superimposed on it. For a simplified analysis, the macroscopic degrees of freedom of
the slider are neglected in the model. The LuGre friction model represents the friction
characteristic. As discussed earlier, the LuGre friction model is a special case of elasto-plastic
model described in Eqs. (2.3)–(2.7) and simulated by putting að:Þ ¼ 1: For mathematical
convenience, the Stribeck effect is modelled by putting d ¼ 1 in Eq. (2.4). The harmonic balance
method (HBM) is used to analyze the friction characteristic under high-frequency velocity
variation. In this method, the bristle deflection z is represented by Fourier series expansion as
given below (see Appendix A for details).

z ¼ X0 þ
XH

n¼1

Xn cosðnotÞ �
XH

n¼1

Yn sinðnotÞ; ð3:1Þ

where H is the number of harmonic terms used in the expansion. X0; Xn and Yn are calculated
from the following linear equation:

½A
f~xxg ¼ f~bbg; ð3:2Þ

where

f~xxg ¼ X0 X1y XH Y1Y2yYHf gT

f~bbg ¼ fQ0Q1yQH 0 0y0gT:

In Eq. (3.2), the elements of the ð2H þ 1Þ � ð2H þ 1Þ matrix [A] and the vector {b} are functions
of the model parameters a0; a1; s0; s1; s2; vm; va; o; v0 and vd : Finally, the friction force is
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computed by

F ¼ s0z þ s1ðvÞ
dz

dt
þ s2v: ð3:3Þ

Out of various phenomena captured by the LuGre friction model, only the memory effect and
the Stribeck effect are relevant for the present discussion. The memory effect of friction is
identified with the existence of a closed loop in the friction-velocity plot. Eqs. (3.1)–(3.3) are
solved and the friction vs. velocity characteristics are shown in Fig. 1 for various frequency of
velocity variation. While solving Eqs. (3.1)–(3.3), the mean velocity vm and the amplitude of
velocity perturbation va are set to be equal. Under such circumstances, the sliding velocity
instantaneously comes down to zero at a certain instant of velocity history. However, as
macroscopic degrees of freedom of the slider is not considered in the model, instantaneous zero
velocity should not be confused with the stiction phenomenon (stiction is addressed elsewhere in
the paper). From Fig. 1, it is observed that the frequency of velocity variation has a significant
effect on the shape and size of the memory loop. The size of the loop initially increases with the
frequency and then gradually shrinks down. At a very high frequency, an asymptotic friction
characteristic with negligibly small loop area is obtained. The friction force near zero velocity
uniformly decreases with the increasing frequency of velocity variation. A pertinent relationship
between the bristle stiffness s0 (i.e. on the tangential contact compliance) and the frequencies at
which the friction force approaches the asymptotic characteristics is also observed (results are not
presented). In case of higher stiffness of bristles, higher frequency is required to obtain the
asymptotic friction characteristic.
The frequency compositions of the friction force under harmonically varying unidirectional

velocity are shown in Fig. 2. From this figure, it is observed that high frequency of velocity
variation causes strong attenuation of the higher harmonic contents of the friction force. This
result gives a frequency domain picture of the smoothening effect of high-frequency excitation on
non-smooth friction process.
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It is important to note here that the source of instability in dynamic systems with friction
is often related to the drooping characteristics of friction with increasing velocity. The results
of the present analysis suggest that high-frequency velocity fluctuation can change the slope
of very low-velocity friction characteristics from negative to positive. Thus, friction-
induced instability in dynamic systems may be controlled by high frequency velocity perturbation.
This also explains the fact that friction-induced instability is absent in stiff systems because
in stiff systems oscillation of velocity takes place at high frequency. Results of this section
confirm and extend the already known results [5] (for some macroscopic friction models) also
for the microscopic friction models. However, it is to be kept in mind that the contact
model considered in this section is highly idealised as the macroscopic degrees of freedom
(the inertia of the slider mass) is not taken into account. Therefore, the effect of high-
frequency velocity perturbation at many important phases of motion like stiction and
stick–slip phase is not explained in the capacity of the present model. In what follows,
realistic contact models with coupled macro and microscopic degrees of freedom are
considered.

4. Mathematical model of an example system with dynamic friction

Mathematical model of a single-degree-of-freedom system with friction is shown in
Fig. 3, where an elastic slider (moving on a frictional surface) having a mass m coupled
by stiffness k to a drive capable of producing time-varying velocity command of the form
vm þ vaðtÞ: The system is subjected to friction represented mathematically according to the LuGre
dynamic friction model. The slider is excited by a high-frequency excitation. The frequency
of excitation is very large compared to the natural frequency of the system or the frequency
of variation of the velocity command. Non-dimensional equation of motion of the system
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is given by

.X þ X þ *F ¼ *ff ðt;T0Þ þ *fsðtÞ þ v�mt;

dZ

dt
¼ ’X �

s�0j ’XjZ
g�ð ’XÞ

and

*F ¼ s�0Z þ s�1ð ’XÞ
dZ

dt
þ s�2 ’X; ð4:1Þ

where the non-dimensional quantities are as defined below.
t ¼ ton is non-dimensional time, T0ð51Þ is non-dimensional time period of fast excitation.

*ff ðt;T0Þ ¼
Ff

mo2
nL

and

*fsðtÞ ¼
k
R t
0 vaðsÞ ds

mo2
nL

are fast (dither) and slow excitation, respectively.

on ¼

ffiffiffiffi
k

m

r
;

X ¼ x=L; ’X ¼ x=onL; .X ¼ x=o2
nL; Z ¼ z=L with L as an arbitrary length quantity;

s�0 ¼
s0
k
; s�1ð ’XÞ ¼ #s�1e

�ð ’X=v�
d
Þ2 ; #s�1 ¼

#s1
mon

; v�d ¼
vd

onL
; s�2 ¼

s2
mon

and

g � ð ’XÞ ¼ fc þ ðfs � fcÞe�ð ’X=v�s Þ
2

with

fc ¼
Fc

mo2
nL

; fs ¼
Fs

mo2
nL

; v�m ¼
vm

onL
and v�s ¼

vs

onL
:

In the above model, X represents the macroscopic structural degree of freedom and Z
(deflection of interface bristles) represents the microscopic degree of freedom of the friction
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interface. These two degrees of freedom are coupled through the friction force. The equation of
motion (4.1) without the fast excitation generally describes the dynamics in two disparate time
scales, Z being the faster variable. Three disparate time–scales may appear when the time scale of
the fast excitation is different from the time scales of X and Z:

5. Theoretical estimation of the effective friction under fast vibration

In this section, two different models of fast excitation are considered to analyze the effective
friction characteristics. The first model deals with a somewhat hypothetical but theoretically
possible fast excitation, which is equivalent to driving the frictional surface by high-frequency
velocity excitation. The consideration of this type of excitation makes the system amenable to easy
analytical treatment. The second model uses sinusoidal fast excitation, and considers a relatively
simpler version of friction model in obtaining an analytical expression of the effective friction
characteristics. Though sinusoidal excitation is more realistic, the corresponding analytical
treatment becomes tedious when a complete model of friction is considered. Therefore, for the
mathematical convenience, only a partial model (keeping only the essential part) of friction is
considered in this case. However, it will be shown later that qualitatively as well as quantitatively
one does not miss much even with this partial model of friction.

5.1. Model 1: fast excitation is equivalent to square wave velocity excitation

As the effective friction characteristics are of importance, one sets vm� equal to zero. Under this
circumstance, the non-dimensional equation of motion of the system may be written as

.X þ X þ *F ¼ *ff ðt;T0Þ þ *fsðtÞ;

dZ

dt
¼ ’X �

s�0j ’XjZ
g�ð ’XÞ

;

and

*F ¼ s�0Z þ s�1ð ’XÞ
dZ

dt
þ s�2 ’X: ð5:1Þ

If the fast excitation is assumed much faster compared to both X and Z; it is pertinent to
represent the system into two disparate time scales. Therefore, one can use the method of direct
partition of motion (MDPM) [18] to split the motion X and Z into slow and fast components, the
time scale of the fast component having the same order of magnitude as the fast excitation. Thus,
one writes

X ðtÞ ¼ XsðtÞ þ T0f1ðt;TÞ;

ZðtÞ ¼ ZsðtÞ þ T0f2ðt;TÞ; ð5:2Þ

where

T ¼ T�1
0 t;
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with

/f1;2S ¼ T�1
0

Z T0

0

f1;2ðt;TÞ dT ¼ 0: ð5:3Þ

Putting Eq. (5.2) in Eq. (5.1), one obtains

f00
1 ¼ �T0ð .Xs þ 2 ’f0

1 þ Xs þ *F � *fsðtÞÞ þ T0
*ff ðt;T0Þ þ OðT2

0 Þ ð5:4aÞ

f0
2 ¼ � ’Zs þ ’Xs þ f0

1 �
s�0j ’Xs þ f0

1jZs

g�ð ’Xs þ f0
1Þ

þ OðT0Þ; ð5:4bÞ

where 0 denotes differentiation with respect to time variable T :
If the fast excitation is strong enough such that

T0
*ff ðt;T0ÞBOð1Þ or higher;

the first order form of Eq. (5.4a) is given by

f00
1 ¼ T0

*ff ðt;T0Þ: ð5:5Þ

For mathematical convenience, one may assume that there exists a fast excitation force (at least
theoretically) such that single integration of Eq. (5.5) gives a square pulse. Thus, f0

1 is represented
by a square pulse as shown in Fig. 4. One should note that the application of such fast excitation
produces the same effect as obtained by superimposing a high-frequency square-wave on the
sliding velocity. Using Eq. (5.3), one can perform averaging of Eqs. (5.4a) and (5.4b) to obtain the
following equations that govern the average dynamics of the system:

.Xs þ Xs þ/ *FðZs; ’Xs þ f0
1ÞS ¼ *fsðtÞ; ð5:6aÞ

ARTICLE IN PRESS

Fig. 4. High-frequency square wave.

S. Chatterjee et al. / Journal of Sound and Vibration 269 (2004) 61–8970



’Zs ¼ ’Xs � s�0Zs

j ’Xs þ f0
1j

g�ð ’Xs þ f0
1Þ

� �

¼ ’Xs �
1

2
s�0Zs

j ’Xs þ W1j
g�ð ’Xs þ W Þ

þ
j ’Xs � W j

g�ð ’Xs � W Þ

� 	
; ð5:6bÞ

where

/ *FS ¼ s�0 1�
s�1ð ’Xs þ f0

1Þj ’Xs þ f0
1j

g�ð ’Xs þ f0
1Þ

� �� 	
Zs þ s�2 ’Xs þ s�1ð ’Xs þ f0

1Þð ’Xs þ f0
1Þ

� �� �

¼ s�0Zs þ s�2 ’Xs þ
1

2
s�1ð ’Xs þ W Þð ’Xs þ W Þ þ s�1ð ’Xs � W Þð ’Xs � W Þ
� �

�
1

2
s�0Zs

s�1ð ’Xs þ W Þj ’Xs þ W j
g�ð ’Xs þ W Þ

þ
s�1ð ’Xs � W Þj ’Xs � W j

g�ð ’Xs � W Þ

� 	
: ð5:6cÞ

It is pertinent to assume that non-dimensional contact stiffness s�0c1: Thus, Eqs. (5.6a)–(5.6c)
may be rewritten as

.Xs þ Xs þ/ *FðY ; ’Xs þ f0
1ÞS ¼ *fsðtÞ; ð5:7aÞ

e ’Y ¼ ’Xs �
1

2
Y

j ’Xs þ W1j
g�ð ’Xs þ W Þ

þ
j ’Xs � W j

g�ð ’Xs � W Þ

� 	
; ð5:7bÞ

where

/ *FS ¼ Y þ s�2 ’Xs þ
1

2
s�1ð ’Xs þ W Þð ’Xs þ W Þ þ s�1ð ’Xs � W Þð ’Xs � W Þ
� �

�
1

2
Y

s�1ð ’Xs þ W Þj ’Xs þ W j
g�ð ’Xs þ W Þ

þ
s�1ð ’Xs � W Þj ’Xs � W j

g�ð ’Xs � W Þ

� 	
; ð5:7cÞ

where

Y ¼ s�0Zs and the small quantity e ¼ ðs�0Þ
�1:

One observes that Eqs. (5.7a) and (5.7b) are in the standard form of singular- perturbation
problem. Thus, following Tikhonov theorem [19], the corresponding dynamics can be described
on slow and fast manifolds. It may be noted here that the structural degree of freedom Xs

describes the slow dynamics and the microscopic degree of freedom Y describes the fast dynamics
of the system. Putting e ¼ 0 in Eq. (5.7b), one obtains the reduced order model of the system as
follows:

.Xs þ Xs þ/ *FðY ; ’Xs þ f0
1ÞS ¼ *fsðtÞ; ð5:8Þ

where the effective friction force / *FS is given by

o *F >¼ Y þ s�2 ’Xs þ
1

2
ðs�1ð ’Xs þ W Þð ’Xs þ W Þ þ s�1ð ’Xs � W Þð ’Xs � W ÞÞ

�
1

2
Y

s�1ð ’Xs þ W Þj ’Xs þ W j
g�ð ’Xs þ W Þ

þ
s�1ð ’Xs � W Þj ’Xs � W j

g�ð ’Xs � W Þ

� 	
; ð5:9Þ
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and

Y ¼
2 ’Xs

j ’Xs þ W j
g�ð ’Xs þ W Þ

þ
j ’Xs � W j

g�ð ’Xs � W Þ

� 	: ð5:10Þ

Eq. (5.10) describes the slow manifold of the system. After using the following time and co-
ordinate transformation

#Y ¼ Y �
2 ’Xs

j ’Xs þ W1j
g�ð ’Xs þ W Þ

þ
j ’Xs � W j

g�ð ’Xs � W Þ

� 	; #t ¼ t=e

and considering ’Xs as constant one obtains the boundary layer system describing the fast
dynamics as

d #Y

d#t
¼ �

1

2
#Y

j ’Xs þ W1j
g�ð ’Xs þ W Þ

þ
j ’Xs � W j

g�ð ’Xs � W Þ

� 	
: ð5:11Þ

One may observe that the equilibrium

#Y ¼ 0

of boundary layer problem (5.11) is uniformly asymptotically stable for all velocities. Therefore,
according to the Tikhonov’s theorem1, the reduced problem given by Eqs. (5.8)–(5.10) describes
the steady state dynamics of Xs accurate to order e.
As a numerical example, typical plots of the effective friction vs. velocity are shown in Fig. 5 for

the following parameter values (suitably non-dimensionalised experimental data [2]).

s�0 ¼ 100; #s�1 ¼ 10; s�2 ¼ 0:004; v�s ¼ 0:1; fc ¼ 1; fs ¼ 1:5:

As discussed earlier, v�d renders the friction model dissipative by controlling the rate of change of
bristle damping factor with velocity. However, no experimental value of the parameter v�d is
available in literature. Theoretically, one may assume any value that satisfies the following
condition:

s�1ðvÞo
4g�ðvÞ
jvj

:

In the present discussion, two different values of v�d are used. In Fig. 5(a), v�d is of the same order of
magnitude as v�s and is one order less in Fig. 5(b). It is noted from Fig. 5(b) that for small values of
v�d ; one may neglect the effect bristle damping and obtain a simplified expression of the effective
friction force as follows:

/ *FS ¼
2 ’Xs

j ’Xs þ W j
g�ð ’Xs þ W Þ

þ
j ’Xs � W j

g�ð ’Xs � W Þ

� 	þ s�2 ’Xs ð5:12Þ
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1The other Tikhonov conditions are also satisfied almost everywhere except when absolute value of the sliding

velocity is W :
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Corresponding effective friction force obtained from Eq. (5.12) is shown in Fig. 5(b) (as o-
markers). From Figs. 5(a) and (b), it is observed that in the low-velocity ð{W Þ region effective
friction force acts like almost linear viscous damping force. In the high-velocity region, friction
characteristics follow the viscous damping characteristics of the lubricated surface. Therefore, one
may write

d/ *FS
d ’Xs

¼
fc þ Ws�2

W
8 j ’Xsj{W ;

d *F
� �
d ’Xs

Es�2 8j ’XsjcW : ð5:13Þ

From Eq. (5.13), one infers that the effective low-velocity friction characteristic is a function of
the Coulomb level of friction force, viscous damping coefficient of the lubricated surface and the
dither characteristics.
In case of higher value of v�d ; one observes (Fig. 5(a)) a transitional complexity in the effective

friction vs. velocity characteristics around the dither velocity W : Besides the primary negative
slope in friction vs. velocity plot associated with the Stribeck effect, one observes a secondary zone
of negative slope. This secondary zone occurs at velocity less than W ; whereas the primary zone of
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Fig. 5. Analytically obtained effective friction force with and without fast excitation discussed in model 1. (a) LuGre

model, v�d ¼ 0:1; (b) LuGre model, v�d ¼ 0:01; (c) static friction model and (d) without dither (LuGre).
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negative slope occurs at velocity higher than W : The effect of this secondary zone of negative
slope on the stability of the system is addressed elsewhere in the article.
It is important to note the difference between the effective friction characteristics calculated

based on the steady state friction model and the LuGre model. In case of the steady state friction
model, the effective friction characteristic is given by

*F
� �

¼ 0:5ðg�ð ’Xs þ W ÞSgnð ’Xs þ W Þ þ g�ð ’Xs � W ÞSgnð ’Xs � W ÞÞ þ s�2 ’Xs: ð5:14Þ

Corresponding effective friction vs. velocity is plotted in Fig. 5(c) for comparison. From Fig. 5(c),
it is observed that the slope of the effective friction force calculated form the steady state model is
s�2 and thus, independent of the dither characteristics (W ). When no lubrication is used, i.e.,
s�2 ¼ 0; the low velocity friction force becomes zero. Therefore, one infers that the steady state
friction model underestimates the effective friction force in comparison to that obtained from the
LuGre model.
To verify the analytical results discussed above, numerical simulation of the system is carried

out using MATLABt SIMULINK. The slow excitation is modelled as 1.7 sin(0.5t) and the dither
(superimposed on the velocity of the slider) as a square waveform having amplitude 0.5 and
frequency 1000. The effective friction forces vs. velocity characteristics are constructed using the
filtered versions of velocity and friction. Low-pass Butterworth analog filters (filter order 8 and
the lower band edge frequency 500) are used to eliminate the high-frequency components of
velocity and friction signal. Numerically simulated (using the Dormand-Prince algorithm)
effective friction characteristics depicted in Figs. 6(a) and (b) clearly demonstrates the validity of
the analytical results shown in Figs. 5(a) and (b).

5.2. Model 2: sinusoidal dither

A comprehensive theoretical analysis presented in the last section has demonstrated that the
low-velocity effective friction characteristics is a strong function of the Coulomb friction level,
viscous damping characteristics of the lubricated surface and the dither characteristics. In the
present section, a simplified model of friction, disregarding the Stribeck effect and the bristle
damping, is considered to analyze the effect of sinusoidal dither on the low-velocity friction
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Fig. 6. Comparison of analytical and simulated effective friction characteristics. ——, MATLAB simulation; J,

analytical. (a) v�d ¼ 0:1; (b) v�d ¼ 0:01:
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characteristics. Under these circumstances, equation of motion (5.1) assumes the following form:

.X þ X þ *F ¼ *fsðtÞ þ aO2
f sinðOf tÞ;

’Z ¼ ’X �
s�0j ’XjZ

fc

;
ð5:15Þ

where the friction force *F is given by

*F ¼ s�0Z þ s�2 ’X:

According to the theory of MDPM, on writes

X ðtÞ ¼ XsðtÞ þ O�1
f f1ðt;TÞ;

ZðtÞ ¼ ZsðtÞ þ O�1
f f2ðt;TÞ; ð5:16Þ

where

T ¼ Of t;

with

/f1;2S ¼
1

2p

Z 2p

0

f1;2ðt;TÞ dT ¼ 0: ð5:17Þ

Using the similar assumptions and methods discussed in Section 5.1, one obtains the average
dynamics of the system as follows:

.Xs þ Xs þ s�0Zs þ s�2 ’Xs ¼ *fsðtÞ;

’Zs ¼ ’Xs �
s�0Zs j ’Xs þ f0

1j
� �

fc

;
ð5:18Þ

where

f0
1 ¼ �aOf cosðOf tÞ:

After computation of the average / �S, Eq. (5.18) takes the following form:

.Xs þ Xs þ s�0Zs þ s�2 ’Xs ¼ *fsðtÞ;

’Zs ¼ ’Xs �
s�0Zs

fc

2aOf sinðy1Þ þ ’Xsðp� 2y1Þ
� �

; with y1 ¼ cos�1
’Xs

aOf

� 	
when j ’XsjpaOf ;

ð5:19aÞ

and

’Zs ¼ ’Xs �
s�0Zs

fc

j ’Xsj; when j ’Xsj > aOf : ð5:19bÞ
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One finally obtains the effective friction characteristics as

*F
� �

¼ s�0Zs þ s�2 ’Xs

¼
pfc

’Xs

2aOf sinðy1Þ þ ’Xsðp� 2y1Þ
þ s�2 ’Xs; when j ’XsjpaOf

¼ fs sgnð ’XsÞ þ s�2 ’Xs; when j ’Xsj > aOf : ð5:20Þ

Typical characteristics of the effective friction are plotted in Fig. 7. The parameter values are
the same as used in Section 5.1. From Fig. 7, it is observed that near very low velocity region
(5aOf ) effective friction behaves approximately like linear viscous damping, and this low-velocity
linear slope decreases with the increasing strength of fast excitation (aOf ). One may represent this
low-velocity effective friction as

*F
� �

¼
pfc

2aOf

’Xs þ s�2 ’Xs; for j ’Xsj{aOf : ð5:21Þ

To verify the analytical results, numerical simulation of the system is carried out using
MATLABt SIMULINK. For numerical simulation, the full friction model with the Stribeck
effect is considered. The slow excitation is modelled as 1:7 sinð0:5tÞ and the fast excitation as
1500 sin(2000t). The effective friction force vs. velocity characteristics is constructed using the
filtered versions of velocity and friction. Low-pass Butterworth analog filters (filter order 8 and
lower band edge frequency 500) are used to eliminate the high-frequency Components of velocity
and friction signals. Numerically simulated (using Dormand–Prince algorithm) effective friction
characteristics are depicted in Figs. 8(a) and (b) for two different values of v�d : From these figures,
it is observed that low-velocity effective friction resembles linear viscous characteristics as given
by Eqs. (5.20) and (5.21).
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Fig. 7. Effective friction characteristics with sinusoidal dither. ——, aOf ¼ 0:5; - - - - - -, aOf ¼ 0:75:
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6. Effect of fast vibration on stick–slip instability

In this section, the effect of fast excitation on the stability of the system (the stability of the
reference state of the system) depicted in Fig. 3 is discussed. For this purpose, command velocity
is considered as constant, and equation of motion of the system is rewritten in the following non-
dimensional form:

’Z ¼ v �
s�0jvj
g�ðvÞ

Z; ð6:1Þ

’e ¼ vref � v; ð6:2Þ

’v ¼ e � *F þ *ff ðt;T0Þ; ð6:3Þ

where

v ¼ ’X and vref ¼ v�m:

Under the action of a dither discussed in Section 5.1, the average slow dynamics of the system is
given by following non-dimensional equation of motion:

’Z ¼ v �
s�0
2

jv þ W j
g�ðv þ W Þ

þ
jv � W j

g�ðv � W Þ

� �
Z ¼ f1ðv;Z; eÞ; ð6:4Þ

’e ¼ vref � v ¼ f2ðv;Z; eÞ; ð6:5Þ
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Fig. 8. Comparison of analytical and simulated effective friction for sinusoidal dither. ——, MATLABt simulation;

J, analytical. (a) v�d ¼ 0:1; (b) v�d ¼ 0:01:
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’v ¼ e � s�0Z � s�2v

�
1

2
s�1ðv þ W Þ ðv þ W Þ �

s�0jv þ W j
g�ðv þ W Þ

Z

� �
þ s�1ðv þ W Þ ðv � W Þ �

s�0jv � W j
g�ðv � W Þ

Z

� �� �

¼ f3ðv;Z; eÞ: ð6:6Þ

The equilibrium configuration of the system is obtained as

Z ¼ Z0 ¼
2vref

s�0
jv þ W j

g�ðv þ W Þ
þ

jv � W j
g�ðv � W Þ

� �;

e ¼ e0 ¼ s�0Z0;

v ¼ v0 ¼ vref : ð6:7Þ

The stability of the system can be analyzed by computing the eigenvalues of the following
Jacobian matrix:

@f1

@Z

@f1

@e

@f1

@v
@f2

@Z

@f2

@e

@f2

@v
@f3

@Z

@f3

@e

@f3

@v

2
6666664

3
7777775

at Z ¼ Z0; e ¼ e0 and v ¼ vref : The system is stable when the real parts of all the eigenvalues lie in
the left half of the complex plane.
As examples, stability charts in vref vs. W plane are depicted in Figs. 9(a) and (b). The stability

chart is plotted only in the region of reference velocity for which the un-dithered system is
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Fig. 9. Stability chart with fast excitation. Region below ——: primary unstable zone (PU), region between - - - - - -:

secondary unstable zone (SU). (a) v�d ¼ 0:1; (b) v�d ¼ 0:01:
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unstable. From Fig. 9(a), one observes two regions of instability. The major area of instability
extends over the whole range of reference velocity, and the minor zone of instability exists
in the higher range of reference velocity. The minor zone of instability is associated with
the secondary negative slope in the effective friction characteristics shown in Fig. 5(a). How-
ever, as shown in Fig. 9(b), the minor instability zone disappears for smaller values of v�d :
In general, it is concluded that properly selected fast excitation stabilises friction-induced
instability. It may be further noted that in the velocity region as low as the characteristic velocity
vs; fast vibration having velocity amplitude (W ) greater than the reference velocity can stabilise
the system.
Numerical simulation of the model is carried out for different levels of the dither velocity W

and the corresponding velocity time histories of the slider are plotted in Figs. 10(a)–(f). From
Figs. 10(a)–(f), it is observed that the self-sustained velocity oscillation can be either quenched or
reduced by high-frequency dither. Upon proper choice of the dither frequency complete
quenching of oscillation is possible (Figs. 10(d) and (f)).
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Fig. 10. Numerically simulated velocity history for different level of dither velocity amplitude. Vref ¼ 0:4; dither

frequency=1000. (a) W ¼ 0; (b) W ¼ 0:2; (c) W ¼ 0:3; (d) W ¼ 0:4; (e) W ¼ 0:5; (f) W ¼ 0:6:
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7. Effect of fast vibration on stick–slip motion: numerical simulation

Analytical and numerical results discussed in the previous sections have demonstrated that fast
vibration stabilises friction-induced instability by converting the negatively sloped low-
velocity friction characteristics to positively sloped viscous damping. The effective friction
characteristics under the action of fast vibration are also computed analytically. Though the
smoothening of friction characteristics at low velocity and the corresponding effect on the stability
of the system is mathematically understood, no light has so far been shed on the exact mechanism
of the process. In this section, numerical study is carried out to understand the mechanism of
the action of the fast vibration. For this purpose, a slightly generalised representation of the
LuGre friction model, known as the elasto-plastic model [3], is taken into consideration. As
described in Eq. (2.3), the elasto-plastic model of friction is different from the LuGre model only
with respect to the function aðz; vÞ; henceforth termed as elasto-plastic function (EP-function).
Introduction of the EP-function makes it possible to detect the phases of motion like sticking
(a ¼ 0), pre-sliding (0oao1) and sliding (a ¼ 1) rigorously. It is also understood that fast
vibration acts through high-frequency variation of the relative velocity at the friction interface.
Thus, without any loss of generality one may replace the high-frequency forcing term in Eq. (4.1)
by a high-frequency velocity variation superimposed on the slow velocity of the slider. Such an
action causes two-fold computational convenience. Firstly, the computation time is reduced.
Secondly, full control on the dither velocity, the primary variable deciding the extent of the
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Fig. 11. Displacement and velocity time histories of the slider mass with and without fast excitation. – – – –,

displacement; ——, velocity. (a) without dither, (b) dither amplitude=1.5, dither frequency=100, (c) dither

amplitude=2.5, dither frequency=100.
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effect, is possible. In light of the above discussion, a MATLABt SIMULINK model is developed
for numerical simulation.
Numerical simulation is carried out using the Dormand–Prince algorithm (ODE45), a

subroutine built in MATLAB, for the same parameter values as described in Sections 5.1 and 5.2.
Other parameter values are as follows:

v�m ¼ 0:1; *fsðtÞ ¼ 1:7 sinð0:3tÞ; l ¼
zba

zss

¼ 0:8:

Numerically simulated time histories of displacement and filtered (low pass) velocity are presented
in Figs. 11(a)–(c). Time evolution of the EP-function að:Þ and the corresponding histogram of the
sample values of a(.) are plotted in Fig. 12(a)–(f). The time history of the EP-function without the
action of dither shown in Fig. 12(a) demonstrates the existence of long-duration sticking and
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Fig. 12. Time evolution of the EP-function and the corresponding sample histograms with and without fast excitation

(a) and (b) without dither, (c) and (d) dither amplitude=1.5, dither frequency=100, (e) and (f) dither amplitude=2.5,

dither frequency=100.
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slipping phases interposed by pre-sliding phases. From the corresponding histogram shown in
Fig. 12(b), one concludes that the sticking and slipping phases have almost equal share out of the
total number of 18 805 samples. From Figs. 12(c) and (e), one observes that under the action of
dither, long-duration stick–slip is replaced by short-duration stick–slip phases. Corresponding
histograms are plotted for samples taken over integration time (100). 50 162 and 55 937 number of
samples are used in Figs. 12(d) and (f), respectively. From Figs. 12(d) and (f), one may conclude
that the relative share of the slipping time increases with the strength of the dither.
The effective friction curves are plotted in Figs. 13(a) and (d), for different velocity amplitudes

of dither with a fixed frequency of 100. One observes zero-velocity vertical line in the effective
friction plots shown in Figs. 13(a) and (b), and this indicates the existence of long-duration
sticking phases in the motion history. The extent of the vertical line along the friction axis
represents the extent of friction force during stiction. Obviously, the extent of sticking force
decreases with the increasing strength of dither. When the strength of fast excitation is strong
enough, sticking phases disappear, and the corresponding low-velocity effective friction curves
resemble linear viscous damping characteristics as observed in Figs. 13(c) and (d). When the dither
amplitude is kept fixed and the frequency is changed, it is observed that the stick–slip motion
reappears after a critical value of dither frequency, which is a function of dither velocity
amplitude. Fig. 14 depicts the region of long-duration stick–slip motion in the dither amplitude vs.
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Fig. 13. Numerically simulated effective friction plot. v�m ¼ 0: (a) dither velocity=0.5, (b) dither velocity=0.8, (c)

dither velocity=1.5, (d) dither velocity=2.

S. Chatterjee et al. / Journal of Sound and Vibration 269 (2004) 61–8982



ARTICLE IN PRESS

Fig. 15. Displacement and velocity histories of the system without fast excitation. (a) and (b) v�m ¼ 0:1; (c) and

(d) v�m ¼ 0:5; (e) and (f) v�m ¼ 1:

Fig. 14. Stick–slip zone in dithered system for the elasto-plastic model.
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frequency plane. This result is in contrast to what has been observed in case of the LuGre model.
However, one should keep in mind that the LuGre model does not rigorously capture the sticking
phenomena.
It is interesting to understand the basic physical mechanism of the action of dither in reducing

the low-velocity friction. For this purpose, the model is simulated for three different velocity
commands v�m and without any slow excitation. Corresponding displacement, velocity and friction
time histories are plotted in Figs. 15 and 16 without and with dither, respectively. From Fig. 16,
one observes that long-duration stick–slip is suppressed by dither. However, as observed in
Fig. 17, long-duration stick–slip phases are replaced by short-duration stick–slip phases. As
friction force during sticking depends on the duration of stiction, a reduction in friction force is
observed in dithered system. However, histograms of the collected samples of the EP-
functions clearly show that the total relative duration of the short-time sticking phase increases
with the command velocity, which is also the steady state sliding velocity of the system with
dither. This accounts for the increase of friction force with the sliding velocity as observed in
Figs. 16(b), (d) and (f).
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Fig. 16. Displacement and velocity histories of the system with fast excitation. ——, displacement and friction; - - - - -,

velocity. (a) and (b) v�m ¼ 0:1; (c) and (d) v�m ¼ 0:5; (e) and (f) v�m ¼ 1:
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8. Conclusions

The present paper deals with the effect of fast vibration, so-called dither, on a class of systems
with friction. The interaction of microscopic and macroscopic degrees of freedom are considered
for analytical and numerical investigations. The LuGre and the more rigorous elasto-plastic
models are considered as the models of friction. Analytical expressions are obtained for the
effective friction characteristics for two types of dither namely, square-pulse type velocity
excitation and sinusoidal force excitation. Numerical simulation in MATLAB verifies the
analytical results. The effective friction characteristics are shown to resemble to linear viscous
damping characteristics at very low velocity. The low-velocity effective-friction characteristics
depend mostly on the Coulomb friction force and the dither characteristics. The low-velocity
effective-friction force decreases with the increasing strength of the fast excitation. In addition to
that, by proper choices of the dither characteristics, one may completely or partially remove the
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Fig. 17. High-frequency EP-function and friction time histories, and histogram of the system with fast excitation. ——,

EP-function; - - - - -, friction. (a) and (b) v�m ¼ 0:1; (c) and (d) v�m ¼ 0:5 (e) and (f) v�m ¼ 1:
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negative slope in the friction-velocity characteristics. It is worth mentioning here that the
phenomenon of the non-trivial change of low-velocity friction characteristics to viscous damping
characteristics due to fast excitation is not a new finding of this paper. This result is also known
for some macroscopic models of friction. However, in this paper it is shown that the above result
also holds well when microscopic models of friction are considered. It is also shown that the
steady state kinetic friction model underestimates the low-velocity effective friction characteristics
as compared to the dynamic friction models. For some parameter values associated with the
bristle-damping model, one may observe a secondary negative slope in the effective friction vs.
velocity characteristics besides the primary Stribeck effect. The stability of a velocity tracking
system with friction is discussed in light of the dither-induced effective friction characteristics. In
the stability chart, two zones of instability are detected. The primary instability zone is associated
with the Stribeck effect, whereas the secondary instability zone depends on the model parameters
of the bristle damping. However, a proper choice of the fast excitation can always be made for
which the system is stable. Finally, a MATLABt SIMULINK model is developed to numerically
explore the basic mechanism of dither on the effective friction force as well as stick–slip dynamics
of the system. It is shown that long-duration stick and slip phases are broken down to short-
duration sticking and slipping phases. This accounts for the reduction of dithered friction force,
because sticking force reduces with decreasing sticking time. Total relative duration of the short-
time sticking phase increases with the command velocity, and this accounts for the increase of
friction with sliding velocity.

Appendix A

Let bristle deflection Z be represented by a Fourier series as follows:

z ¼ z0 þ
XH

n¼1

zn cosðnot þ fnÞ; ðA:1Þ

where H represents the number of harmonic terms.
For the LuGre model, Eq. (2.3) may re-written as

gðvÞ
dz

dt
¼ vgðvÞ � s0jvjz: ðA:2Þ

Using Eq. (A.1) one may write

gðvÞ
dz

dt
¼ A0 þ

XH

n¼1

An cosðnotÞ þ Bn sinðnotÞ; ðA:3Þ

where

A0 ¼ �a1oep1C0;

An ¼ �ða0onYn þ a1oep1CnÞ;

Bn ¼ �ða0onXn þ a1oep1DnÞ; for n ¼ 1; 2; 3;y;H
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a0 ¼ Fc;

a1 ¼ Fs � Fc;

where

p1 ¼ �
vm

v0
;

X0 ¼ z0

Xn ¼ zn cosðfnÞ;

Yn ¼ zn sinðfnÞ for n ¼ 1; 2; 3;y;H

and

C0 ¼
XH

n¼1

nYnInðpÞ;

Cn ¼
XH

j¼1

jYjðInþjðpÞ þ In�jðpÞÞ;

Dn ¼
XH

j¼1

jXjð�InþjðpÞ þ In�jðpÞÞ for n ¼ 1; 2; 3;y;H

InðPÞ is the modified Bessel’s function having the following integral representation:

InðpÞ ¼
o
p

Z p=o

0

ep cosðotÞcosðnotÞ dt:

Similarly,

vgðvÞ ¼ Q0 þ Q1 cosðotÞ þ
XH

n¼2

Qn cosðnotÞ; ðA:4Þ

where

Q0 ¼ vma0 þ a1vme
p1I0ðpÞ þ a1vae

p1I1ðpÞ;

Q1 ¼ vaa0 þ 2a1vme
p1I1ðpÞ þ a1vae

p1ðI2ðpÞ þ I0ðpÞÞ;

Qn ¼ a1vme
p1Kn þ a1vae

p1Ln; nX2;

where

kn ¼ 2InðpÞ;

Ln ¼ Inþ1ðpÞ þ In�1ðpÞ:
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Similarly,

s0jvjz ¼ R0 þ
XH

n¼1

Rn cosðnotÞ þ
XH

n¼1

Sn sinðnotÞ; ðA:5Þ

where

R0 ¼ s0vmX0 þ s0
va

2

! "
Y1;

Rn ¼ s0vmXn þ s0vaXn�1dn1 þ s0
va

2

! "
Xn�1Uðn � 1Þ þ s0

va

2

! "
Xnþ1UðH � nÞ;

Sn ¼ s0vmXn � s0
va

2

! "
Yn�1Uðn � 1Þ � s0

va

2

! "
Ynþ1UðH � nÞ;

where

UðjÞ ¼ 1 for j > 0;

¼ 0 otherwise;

and

dij ¼ 1 for i ¼ j;

¼ 0 for iaj:

Putting Eqs. (A.3)–(A.5) in Eq. (A.2), and equating equal harmonic terms one obtains

A0 ¼ Q0 � R0;

An ¼ Qn � Rn;

Bn ¼ �Sn for n ¼ 1; 2; 3;y;H: ðA:6Þ

A compact form of Eq. (A.6) is given as

½A
f~xxg ¼ f~bbg; ðA:7Þ

where

f~xxg ¼ fX0X1yXHY1Y2yYHg
T;

f~bbg ¼ fQ0Q1yQH 00y0gT:

Therefore, one solves Eq. (A.7) to obtain bristle deflection and friction force in Fourier series as
follows:

z ¼ X0 þ
XH

n¼1

Xn cosðnotÞ �
XH

n¼1

Yn sinðnotÞ ðA:8Þ

and

F ¼ s0z þ s1ðvÞ
dz

dt
þ s2v: ðA:9Þ

ARTICLE IN PRESS

S. Chatterjee et al. / Journal of Sound and Vibration 269 (2004) 61–8988



References

[1] B. Feeny, A. Guran, N. Hinrichs, K. Popp, A historical review on dry friction and stick slip phenomena, American

Society of Mechanical Engineers, Applied Mechanics Review 51 (5) (1998) 321–341.

[2] C.C. Canudas de Wit, H. Olsson, K.J. Astrom, P. Lischinsky, A new model for control of systems with friction,

IEEE Transaction on Automatic Control 40 (3) (1995) 419–425.

[3] P. Dupont, V. Hayward, B. Armstrong, F. Alpeter, Single state elasto-plastic friction models, IEEE Transactions

on Automatic Control 47 (5) (2002) 787–792.

[4] D.A. Haessig, B. Friedland, On the modeling and simulation of friction, American Society of Mechanical

Engineers, Journal of Dynamic Systems, Measurement, and Control 32 (3) (1991) 167–196.

[5] J.J. Thomsen, Using fast vibrations to quench friction-induced oscillations, Journal of Sound and Vibration 228

(5) (1999) 1079–1102.

[6] B.F. Feeny, F.C. Moon, Quenching stick–slip chaos with dither, Journal of Sound and Vibration 237 (1) (2000)

173–180.

[7] S.L. Ipri, H. Asada, Tuned dither for friction suppression during force-guided robotic assembly, International

Conference on Intelligent Robots and Systems, 5–9 August, Pittsburgh, PA, USA, 1995.

[8] W. Oppelt, A historical review of autopilot development, research, and theory in Germany, American Society of

Mechanical Engineers, Journal of Dynamic Systems, Measurements, and Control (1976) 215–233.

[9] S.K. Basu, D.K. Paul, Design of Machine Tools, 2nd Ed. IBH Publishing Co., Oxford, 1983.

[10] I. Blekhman, Forming properties of nonlinear mechanical systems by means of vibration, Proceedings of IUTAM/

IFToMM Symposium in Synthesis of Nonlinear Dynamical Systems, 24–25 August, Riga, Latvia, 1998, pp. 1–11.

[11] Fidlin, J.J. Thomsen, Predicting vibration-induced displacement for a resonant friction slider, European Journal of

Mechanics of Solids 20 (2001) 155–166.

[12] J.J. Thomsen, Some general effects of strong high-frequency excitation: stiffening, biasing, and smoothening,

Journal of Sound and Vibration 253 (4) (2002) 807–831.

[13] J.J. Thomsen, D.M. Tcherniak, Chelomei’s pendulum explained, Proceedings of the Royal Society of London 457

(2001) 1889–1913.

[14] J.S. Jensen, D.M. Tcherniak, J.J. Thomsen, Stiffening effects of high frequency excitation: experiments for

an axially loaded beam, American Society of Mechanical Engineers, Journal of Applied Mechanics 67 (2) (2000)

397–402.

[15] S. Chatterjee, T.K. Singha, S.K. Karmakar, Non-trivial effect of fast vibration on the dynamics of a class of

non-linearly damped mechanical systems, Journal of Sound and Vibration 260 (4) (2003) 711–730.

[16] M.H. Hansen, Effect of high-frequency excitation on natural frequencies of spinning discs, Journal of Sound and

Vibration 234 (4) (2000) 577–589.

[17] Elmer Franz-Josef, Nonlinear dynamics of dry friction, Journal of Physics: A 30 (1997) 6057–6063.

[18] I.I. Blekhman, Vibrational Mechanics–Nonlinear Dynamics Effects, General Approach, Applications, World

Scientific, Singapore, 2000.

[19] A. Isidori, Nonlinear Control Systems, An Introduction, Springer, Berlin, 1989.

ARTICLE IN PRESS

S. Chatterjee et al. / Journal of Sound and Vibration 269 (2004) 61–89 89


	Effect of high-frequency excitation on a class of mechanical systems with dynamic friction
	Introduction
	Models of friction
	Effect of harmonically varying unidirectional velocity on friction characteristics: contact model without inertia
	Mathematical model of an example system with dynamic friction
	Theoretical estimation of the effective friction under fast vibration
	Model 1: fast excitation is equivalent to square wave velocity excitation
	Model 2: sinusoidal dither

	Effect of fast vibration on stick-slip instability
	Effect of fast vibration on stick-slip motion: numerical simulation
	Conclusions
	References


